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We present and test a new hybrid numerical method for simulating layerwise-two-dimen-
sional geophysical flows. The method radically extends the original Contour-Advective
Semi-Lagrangian (CASL) algorithm [5] by combining three computational elements for
the advection of general tracers (e.g. potential vorticity, water vapor, etc.): (1) a pseudo-
spectral method for large scales, (2) Lagrangian contours for intermediate to small scales,
and (3) Lagrangian particles for the representation of general forcing and dissipation. The
pseudo-spectral method is both efficient and highly accurate at large scales, while contour
advection is efficient and accurate at small scales, allowing one to simulate extremely fine-
scale structure well below the basic grid scale used to represent the velocity field. The par-
ticles allow one to efficiently incorporate general forcing and dissipation.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Numerical simulations of atmospheric and oceanic fluid dynamics must deal with a vast range of active spatial and tem-
poral scales of motion. Much of this range lies beyond the limit of numerical resolution, requiring small scales (and high fre-
quencies) to be instead parametrised by ‘eddy-diffusivity’ or ‘closure’ schemes meant to approximate the collective effects of
unresolved motions on resolved ones (cf. [17] and references). Here, we describe a new modelling advance which reduces
the need for closure schemes by allowing one to efficiently extend the range of resolved scales, in particular for advected
tracers. The new advance is the culmination of years of model development based on ‘‘Contour Advection” (CASL, [5]), a hy-
brid Lagrangian–Eulerian method stemming originally from ‘‘Contour Surgery” [4] and ‘‘Contour Dynamics” [20]. The new
method, called the ‘‘Combined Lagrangian Advection Method” (CLAM), utilises three computational elements—contours, par-
ticles, and grid points (or spectral coefficients)—combined in a way to optimise performance and accuracy.

While CLAM is built for accurate conservation in the absence of forcing and dissipation, it also allows one to efficiently
handle general non-conservative processes such as thermal heating, Ekman friction, and stochastic forcing [7,16,13]. More-
over, it may offer distinct advantages over commonly-used numerical methods in Geophysical Fluid Dynamics when multi-
ple tracers (dynamical, chemical, biological) are considered.

In Section 2 below, we outline the structure of the method. It is next illustrated and tested in an example of forced two-
dimensional turbulence in Section 3. Then it is applied to study an aspect of the banded circulation patterns found in plan-
etary atmospheres in Section 4. Conclusions and ideas for further model development are offered in Section 5.
2. The method

CLAM was developed originally to better model both unforced and forced 2D turbulence at ultra-high Reynolds numbers
[9–11,13]. It is an extension of the recent HyperCASL algorithm [13], which introduced the idea of using point vortices or
. All rights reserved.
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Fig. 1. Comparison of the evolution of (a) energy Etot(t) (normalised by Etot(0) = 0.0148588) and (b) enstrophy Ztot(t) (normalised by Ztot(0) = 4.046645)
between HyperCASL (dashed) and CLAM (solid) in the case of freely-decaying two-dimensional turbulence examined in Fontane and Dritschel [13]. The two
curves shown for CLAM correspond to two different ways of representing qd, by particles (bold) or by a spectral method (thin). See text for details.
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particles to represent a residual tracer field qd (e.g. vorticity in 2D turbulence or potential vorticity in rotating stratified
flows). The residual tracer field qd is used as a temporary reservoir for any explicit forcing and dissipation S(x, t) operating
on the full tracer field q:
1 See
Dq
Dt
¼ Sðx; tÞ ð1Þ
At any instant of time t, the full tracer field q is the sum
q ¼ qa þ qd ð2Þ
in which qa evolves conservatively by contour advection, i.e.
dXa

dt
¼ uðXa; tÞ ð3Þ
(equivalent to Dqa=Dt ¼ @qa=@t þ u � $qa ¼ 0), where Xa is a point on a contour and u(x, t) is the velocity field, while qd

evolves by advecting discrete particles Xd,
dXd

dt
¼ uðXd; tÞ ð4Þ
as well as adjusting the intensities Cd of individual particles to match the imposed forcing and dissipation (see Appendix A).
Every 4 eddy-turnaround times Teddy (determined from the maximum vorticity integrated over time), qd is transferred to a
set of contours representing the primary tracer field qa through an efficient contouring procedure [7]. Standard bi-linear
interpolation is used to create a corresponding gridded field of qd from the particles when needed (see Appendix A).

Weak numerical dissipation occurs during the regularization of contours by ‘‘surgery” [4], and when resetting the parti-
cles on a regular array. Both are done approximately every 0.2Teddy. Notably, in simulations of freely-decaying two-dimen-
sional turbulence, it has been shown that this dissipation is comparable to that needed in a conventional spectral method
using a grid 10–20 times finer than used in HyperCASL and CLAM to represent the velocity field u [11].

An unwanted feature of HyperCASL is the introduction of a small level of numerical error or stochastic noise in qa by the
contour-to-grid conversion procedure and, to a much lesser extent, by contour surgery [13]. Unfortunately, this noise is sta-
tistically uniform across Fourier modes and it generates a growing k1 tracer variance spectrum at small k. In simulations of
2D turbulence [13], this gives rise to a growing k�1 energy spectrum at small k (the actual energy spectrum normally decays
rapidly as k ? 0, see e.g. [10]).1 As a consequence, this noise primarily affects the energy while enstrophy (vorticity variance) is
more robust, see Figs. 1 and 2. And in long-time simulations, it can eventually lead to significant erroneous energy loss.

CLAM removes this unwanted feature (see Fig. 1(a)) by using a pseudo-spectral (PS) method to model large scales, spe-
cifically wavenumbers k 6 kc, where kc is the ‘filter cutoff wavenumber’. The PS method is well-designed for this purpose
and, moreover, is both accurate and efficient. In CLAM, the tracer field computed this way, denoted qs, is blended with
the primary tracer field qa (represented by contours). The full tracer field is obtained now from
q̂ ¼ Fq̂s þ ð1� FÞq̂a þ q̂d ð5Þ
where a hat denotes a spectral transform, and F(k) is a low-pass filter (see below). The only difference between HyperCASL
and CLAM is the replacement of qa in (2) by a weighted sum of qs and qa. The form of the filter F(k) was fixed after extensive
numerical tests (see below), and it takes the form
Fig. 8 in the online notes at www-vortex.mcs.st-and.ac.uk/HyperCASL.pdf accompanying Fontane and Dritschel [13].

http://www-vortex.mcs.st-and.ac.uk/HyperCASL.pdf


Fig. 2. Difference energy spectra DEðk; tÞ as a function of wavenumber k, at low k, between HyperCASL and CLAM with particles (thin solid line with
diamonds) and between CLAM with spectral qd and CLAM with particles (bold solid line with squares), at (a) t = 2 and (b) t = 5. Note, Eðk; tÞ is sum of the
energy jûj2=2 in spectral components with wavevectors k satisfying jkj = k = 1,2, . . . (nearest integer). The results were obtained from the turbulence
simulations examined in Fig. 1.
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FðkÞ ¼ 1

1þ ðk=kcÞ4
: ð6Þ
This is known as the second-order Butterworth filter [1], and it has a maximal flatness property for k 6 kc. Additionally, there
is a smooth transition between q̂s and q̂a around the filter cutoff wavenumber kc.

The introduction of qs requires another dynamical evolution equation. Here, we evolve qs conservatively, i.e.
Dqs

Dt
¼ 0 ð7Þ
with no dissipation whatsoever. This is of course unsustainable in general, as q̂s will cascade to high k by advection, and the
solution will become unphysical if these high k components of q̂s are not removed, e.g. by numerical diffusion. Instead, in
CLAM, qs and qd are reinitialised at the beginning of every time-step. The field qs is set to the entire q field obtained at the
end of the previous time-step. Meanwhile, the field qd is chosen to ensure that q is unchanged when qs, qa and qd are next
recombined. Mathematically, this means taking
q̂s ¼ q̂ and q̂d ¼ ð1� FÞðq̂� q̂aÞ ð8Þ
where q̂ is the (spectral) field at the end of the previous time-step. When they are next recombined, we find
Fq̂s þ ð1� FÞq̂a þ q̂d ¼ Fq̂þ ð1� FÞq̂a þ ð1� FÞðq̂� q̂aÞ ¼ q̂ ð9Þ
as required. A fourth-order Runge–Kutta procedure is convenient for the subsequent integration over a single time-step.
This reinitialisation procedure avoids the erroneous random variations of q̂a across all k and moreover allows an accurate

estimate of the advection term u � $qs needed for evolving q̂s. Furthermore, any forcing or dissipation in q̂d in wavenumbers
k [ kc is transferred every time-step to q̂s, thereby minimizing numerical diffusion in q̂d. This is especially important for
forced flows, as we shall see in Section 3. Regarding efficiency, in forced flows CLAM is only a few percent slower than Hyper-
CASL and significantly more accurate (a comparison is provided below). The extra cost associated with the spectral method,
at the resolution required for its use in CLAM, is minimal due to the spectral method’s particularly high efficiency compared
to the contour and particle methods.

The reinitialisation of qd does however require a transfer of the gridded qd to the particle intensities Cd. This is not an
efficient procedure but is required every time-step in forced flows. In unforced flows, such as considered in Fontane and Drit-
schel [13] for HyperCASL, this transfer is required only when the particle array is reset—in practice only after many time-
steps. As a result, HyperCASL is relatively efficient, approximately 60% faster than CLAM in the simulation of unforced 2D
turbulence illustrated in Fig. 1 (discussed in [13]). We can gain back this loss of efficiency, and more, if we replace the particle
method for qd by a spectral method (as in DCASL, see [7,16]) when simulating unforced flows, or flows forced or damped
predominantly at large scales (e.g. thermal forcing in geophysical flows). But the use of a spectral method for qd requires
some sort of numerical diffusion for stability. The simplest approach is hyperdiffusion, i.e.
Dqd

Dt
¼ mdð�1Þpþ1$2pqd; ð10Þ
and after extensive tests varying both the power p and the coefficient md, we have adopted the choice p = 2 (bi-harmonic
hyperviscosity) together with md ¼ 5frmsðtÞ=k4

m, in which km is the maximum wavenumber associated with the inversion grid
and frms is the r.m.s. (vertical) vorticity.2 Besides maintaining numerical stability and greatly reducing Gibbs fringes near high
e: hyperdiffusion is applied only to the residual field qd, not to qs.



Table 1
Comparison of algorithm efficiency (using a 2.8 GHz Intel processor) in a simulation of freely-decaying 2D turbulence, cf. Fig. 1 and [13]. Here, HyperCASL is
compared with two versions of CLAM, the first using a pseudo-spectral (PS) method for qd and the second using a particle-in-cell (PIC) method. Here, CLAM with
PS qd is 8% more efficient than HyperCASL, while CLAM with PIC qd is 60% less efficient.

Numerical algorithm Cost (CPU seconds)

HyperCASL 2669
CLAM with PS qd 2459
CLAM with PIC qd 4285
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gradients in qd, this choice of hyperdiffusion gives the closest comparison to the results we find when using particles for qd.
Using a spectral method for qd rather than particles is guaranteed to be more efficient. In the unforced simulation illustrated
in Fig. 1, this spectral version of CLAM results in a nearly 10% gain in efficiency over HyperCASL—see Table 1—and achieves sig-
nificantly greater accuracy. Although CLAM with PS qd is slightly less accurate than CLAM with PIC qd, it is nearly twice as
efficient.

A small modification of the recontouring procedure in HyperCASL [13] was made in CLAM, following extensive tests, to
improve the accuracy of this procedure. In recontouring, the difference field q0 = q � qa at the end of a simulation period is
extrapolated from the basic ‘inversion’ grid to an ultra-fine contouring grid (16 times finer in each direction) and added to
the contour-associated field qa on this grid (whose smallest scale is the scale of surgery). This combined field is then recon-
toured, and the error in contouring with a finite contour interval Dq present on the inversion grid is given to qd to start the
next simulation period. There is then no change to the total q on the inversion grid following recontouring. In HyperCASL, we
used bi-linear interpolation to extrapolate q0 to the contouring grid, whereas in CLAM (and now in HyperCASL too) we use
spectral interpolation (zero padding) for greater accuracy. In this way we retain all information in q0. Spectral interpolation
results in no significant loss in efficiency.

A brief history of the key developments leading to CLAM is given in Fig. 3.
3. A test case

To justify our choice of the filter F(k) and the filter cutoff wavenumber kc, we next examine a set of numerical simulations
of forced 2D turbulence in a square doubly-periodic domain of width 2p. Note, here q is the 2D (barotropic) vorticity. We
have carried out simulations at three different resolutions and for widely varying forcing wavenumbers kf. Following many
previous studies, we have used narrow-band forcing in which a random-phased top-hat enstrophy spectrum, constant over
kf � Dk 6 k 6 kf + Dk, is added every time-step to ensure a constant rate of enstrophy growth, here 7.8957, in the absence of
Fig. 3. A genealogical tree for numerical methods based wholly or in part on contour advection. Here CD = contour dynamics, CS = contour surgery,
DCASL = diabatic CASL, PS = pseudo-spectral and PIC = particle-in-cell.
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dissipation. This forcing results in a nearly constant energy growth, at the rate e = 0.0077409, over the times considered.
Note, the flow starts from a state of rest.

We focus on one simulation with a basic ‘inversion grid’ of 256 � 256 (with maximum wavenumber km = 128), forced at
k = kf = 32 (with Dk = 2), and using all of the standard parameter settings recommended in Fontane and Dritschel [13]. In par-
ticular, we use a contour interval Dq = p/5 � 0.6283 for representing qa (using an estimated unit eddy-turnaround time). The
evolution is simulated over a moderate time period, 0 6 t 6 20, corresponding to nearly 80Teddy based on the time integrated
maximum vorticity, or 10.5Teddy based on the time integrated r.m.s. vorticity. A few stages in the evolution (at t = 2, 5, 10 and
20) are shown in Fig. 4 (note, only 1/16th of the domain is shown). In the earliest stage shown (upper left), the direct effect of
the forcing is most evident; the flow has not yet had time to evolve significantly. By the next stage, one can already see the
formation of vortices surrounded by cascading filamentary debris. The later stages are closely similar, albeit with more fine-
scale structure and marginally more organised large-scale vortices (the energy grows by cascading slowly to large scales
from the forcing wavenumber).

In spectral space (see Fig. 5), energy Eðk; tÞ (shell averaged over wavevectors k of magnitude k = jkj) spreads from its ini-
tial forcing region near k = kf = 32 and rapidly becomes nearly time-independent except at small k. There, energy grows as it
cascades to large scales, resulting in a growth of the total energy EtotðtÞ ¼

R
Eðk; tÞdk. This energy growth is approximately

linear in time, as expected statistically from narrow-band random forcing at large kf. Fig. 6 (left panel) compares the ob-
served growth for various simulations with the theoretical linear growth (dotted line). Two CLAM simulations are illustrated,
one using particles for qd (bold line) and the other using a spectral method for qd (thin line). The HyperCASL simulation (low-
er dashed line) shows poor conservation properties. The CLAM simulations, by contrast, closely match the theoretical growth
apart from a slight deficit at early times, during the first period of integration from rest without contours (0 6 t 6 2.846).
These tendencies are more clearly seen in the right panel, which shows the difference between the actual and theoretical en-
ergy, normalised by the final energy at t = tf = 20.

Fig. 7 compares the fractional energy error in CLAM simulations using (a) different filter cutoff wavenumbers kc for the
same second-order Butterworth filter (6), and (b) different orders of the Butterworth filter for the same cutoff wavenumber,
kc = 42 (�km/3). We see in (a) that kc = 42 gives the best fit to the theoretical prediction, while in (b) that the second-order
Butterworth filter gives the best fit. Poorer results (not shown) were found for the Gaussian filter FðkÞ ¼ e�ðk=kcÞ2 and the sharp
filter F(k) = 1 for k 6 kc and F(k) = 0 otherwise. The dependence on kc can be explained by noting that, for small kc, most of the
dynamics is controlled by the contours in qa, and we know from Fontane and Dritschel [13] that contour advection alone can
lead to an erroneous growth of energy at low wavenumbers, resulting in an enhanced growth of Etot. Conversely, for large kc,
most of the dynamics is controlled by the spectral evolution which is more diffusive than contour advection, resulting in a
Fig. 4. Evolution of the vorticity field in a CLAM simulation of forced 2D turbulence using a basic 256 � 256 grid (contours are retained to scales 16 times
smaller). Times t = 2,5, 10 and 20 are shown from left to right. Only 1/16th of the domain is shown. A linear grey scale is used between �jqjmax < q < jqjmax

(black being most negative).

Fig. 5. Energy spectra Eðk; tÞ at the times corresponding to the images in Fig. 4. Note that the spectral tails extend well beyond the maximum wavenumber
km = 128 associated with the inversion grid. These tails have slopes between k�4 and k�3, and do not change significantly after t = 10. Instead, the spectra
build at low wavenumbers (large scales), consistent with a linear growth in total energy (see text).



Fig. 6. Total energy Etot(t) (left) versus time in several simulations of forced 2D turbulence, with forcing centred on wavenumber k = kf = 32. The bold, thin
and dashed curves correspond to CLAM using particles for qd, CLAM using a spectral method for qd, and HyperCASL, respectively, while the dotted line gives
the theoretical growth. The figure on the right shows the fractional energy error, (Etot � et)/etf, where e = 0.0077409 is the theoretical energy growth rate
and tf = 20 is the final time. The three simulations use all the standard numerical parameters set out in Fontane and Dritschel [13]. In addition, the two CLAM
simulations here use the second-order Butterworth filter (6) with cutoff wavenumber kc = km/3 = 42.

a b

Fig. 7. (a) Fractional energy error (Etot � et)/etf versus time for three CLAM simulations using the second-order Butterworth filter (6) with cutoff
wavenumbers kc = 32 (thin line), 42 (bold) and 64 (dashed). A least-squares fit of Etot(t)/e to t gives a fractional slope error of 12.5%, �0.335% and �7.27%,
respectively. (b) As in (a) except now for kc = 42 and for the following filters F(k): first-order Butterworth [1 + (k/kc)2]�1 (thin line), second-order
Butterworth [1 + (k/kc)4]�1 (bold), and third-order Butterworth [1 + (k/kc)6]�1 (dashed). The fractional slope errors are 2.17%, �0.335% and �5.45%,
respectively.
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retarded growth of Etot. From these results, and many other simulations for different ratios of kf/km, we have found that the
second-order Butterworth filter with a filter cutoff wavenumber kc = km/3 is most accurate.

There is a limit, however, to how large one can make the ratio kf/km. Above, we examined kf/km = 1/4, but when using a
larger value like kf/km = 1/2 we observed an early retarded growth of Etot followed by a later growth having a slope slightly
lower than expected (not shown). Every effort was made to correct this growth, from modifying the numerical parameter
settings in CLAM, to using a smaller contour interval Dq, to changing the bi-linear interpolation of the velocity field on con-
tour points and particles to the third-order M0

4 scheme of Cottet et al. [3], or the incompressible quadratic-spline method of
Handscomb [14], and even to replacing CLAM with a full pseudo-spectral simulation (on a four times finer inversion grid) for
the early simulation period. None of these improved the growth of Etot, and all were more costly.

This limitation on the size of kf/km is, however, not surprising. When kf is only half km, there is little room for resolving the
nonlinear spread of the forcing through qd, and this results in numerical dissipation. Relative to the maximum effective
wavenumber associated with the ultra-fine grid, here 16km, our tests show that kf should be at least 64 times smaller. Inde-
pendently, using a pure pseudo-spectral method, Scott [18] has found that the maximum wavenumber must be at least 64
times the forcing wavenumber to properly model the inverse cascade in two-dimensional turbulence. It is therefore reason-
able to limit kf/km to 1/4 in CLAM when narrow-band spectral forcing is used. Other common types of forcing, such as ther-
mal forcing in geophysical flows, tend to be broad-band with significant input at large scales. In general, these types of
forcing can be more easily represented in numerical models, and CLAM is no exception. Indeed, CLAM like its predecessor



Table 2
Comparison of algorithm efficiency in a simulation of forced 2D turbulence, cf. Fig. 4. In this case, both versions of CLAM are less efficient (28% and 41%,
respectively) than HyperCASL, but HyperCASL is unable to capture the correct linear energy growth.

Numerical algorithm Cost (CPU seconds)

HyperCASL 7698
CLAM with PS qd 9856
CLAM with PIC qd 10,864

Fig. 8. Basic-state velocity profile �u used in the jet sharpening experiment.
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HyperCASL offers new possibilities for forcing, e.g. by introducing new particles carrying circulation and other attributes
[13]. Such forcing may be particularly effective in representing subgrid-scale convection in a model of the atmosphere.

As regards efficiency, CLAM is less efficient than its predecessor HyperCASL as indicated in Table 2. However, the extra
work in CLAM is necessary, in the case of forced 2D turbulence analysed above, to accurately capture the correct growth
in energy (see Fig. 6). The retarded energy growth seen in HyperCASL is a consequence of retaining the forcing wholly in
particles, which diffuse vorticity every time they are reset on a regular array. By contrast, CLAM transfers most of the forcing,
every time-step, to a spectral method (that used for qs), thereby preserving nearly all of the added vorticity. This, we empha-
size, is an especially important characteristic of CLAM. Hence, CLAM not only represents the large-scale dynamics optimally
(i.e. with a spectral method), but also represents complex forcing accurately.

4. An application to jet sharpening

As an illustration of the method in a geophysical context, we next examine a simulation of ‘‘jet sharpening” in a rapidly-
rotating, stably-stratified flow (see [8] and references). We consider the unforced single-layer shallow-water quasi-geo-
strophic model
3 A g
Dq
Dt
¼ 0

r2 � L�2
D

� �
w ¼ q� f ; u ¼ ðu; vÞ ¼ � @w

@y
;
@w
@x

� � ð11Þ
where q is the potential vorticity (PV), f = f0 + by is the background planetary vorticity or Coriolis frequency, and w is the
streamfunction. The length scale LD ¼

ffiffiffiffiffiffi
gH

p
=f0 is the Rossby deformation length, where g is gravity, H is the mean fluid depth,

and f0 is the mean Coriolis frequency.
We consider just one example, with LD = 1/8, b = 2, and a broad basic-state PV distribution �qðyÞ ¼ bperfðyÞ in a square

doubly-periodic domain of width 2p. (Here, f0 has been absorbed into the definition of q, by replacing q � f by q � by in
(11).) This PV distribution induces a broad jet �uðyÞ with maximum speed 0.07635 at y = 0 and zero mean, see Fig. 8. This ba-
sic-state flow is steady and stable due to the monotonic variation of PV. To induce jet sharpening—a tightening of PV gradi-
ents—a random isotropic PV field with energy spectrum EðkÞ ¼ ck3 expð�2k2

=k2
0Þ and k0 = 16 is superimposed on the basic-

state PV. The constant c is determined by specifying the r.m.s. amplitude of this field, here four times the PV contrast across
the jet Dq = 2pb. A few stages of the evolution are shown in Fig. 9. The initial turbulence strongly disrupts the jet, but soon
the flow re-organises into a more concentrated jet (actually a double jet, see below) together with a number of persistent
vortices. At late times, the jet is clearly visible as the wavy contrast in PV in the middle of the domain. Notably, at these times
the vortices remain on either side of the jet and move together with the jet meanders.3
if movie of this simulation is available at www-vortex.mcs.st-and.ac.uk.

http://www-vortex.mcs.st-and.ac.uk


Fig. 10. The mean y location of periodically-wrapping contours of constant PV q at various times indicated. The basic-state profile is shown for comparison.

Fig. 9. Evolution of the PV field in an example of jet sharpening in a single-layer quasi-geostrophic flow. The simulation uses CLAM on a basic 256 � 256
grid. Times t = 0, 25, 100, 400 and 1000 are shown from left to right. A linear grey scale is used between �2pb < qmod < 2pb, where qmod = q modulo 2pb.
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The effect of the turbulence is to accelerate the initial jet, here by more than a factor of 2.5 (along-jet speeds reach approx-
imately 0.2). This acceleration is directly associated with tightening PV gradients [8], seen in the profiles of ye(q) displayed in
Fig. 10 (notice the double-jet structure—there are two plateaux in ye(q)). The function ye(q) gives the mean y location of the
PV contours q = constant which wrap the domain periodically. These contours belong to the jet, and are distinct from the
non-wrapping contours mainly found around the vortices. Fig. 10 demonstrates how turbulence can greatly steepen PV gra-
dients, nearly to the point of a discontinuity.
5. Conclusions

We have described and examined a new hybrid computational method, CLAM, combining three numerical elements:
pseudo-spectral, contour advection and particle-in-cell. By using each element selectively across spatial scales, CLAM
achieves a substantially greater efficiency and accuracy than is possible when using any one element on its own. This has
been explicitly demonstrated for HyperCASL in Fontane and Dritschel [13], and CLAM is by design more accurate for little
extra cost. The use of a pseudo-spectral (PS) method allows one to accurately represent the effects of forcing, and moreover
avoids the slow, erroneous growth of large-scale modes caused by errors in the contour-to-grid conversion procedure and in
contour surgery. The PS method is relatively efficient compared to contour advection and particle-in-cell, and therefore
numerical efficiency is not significantly degraded. While the PS method is stable only for a time-step satisfying the CFL con-
straint Dt < Dx/jujmax, in realistically complex geophysical flows the time-step is nearly always limited by the maximum ver-
tical vorticity: Dt < p/10jfjmax [13]. The CFL constraint applies only to flows dominated by large-scale motions.

As the example in Section 4 indicates, CLAM is not limited to the study of idealised flows like two-dimensional turbu-
lence. It has been widely extended to both single and multi-layer quasi-geostrophic flows subject to general forcing and dis-
sipation mechanisms (cf. [11,12]). CLAM has also been adapted to a periodic channel geometry, and work is in progress on a
spherical extension. In different contexts, CLAM has been implemented to study two-dimensional rotating shallow-water
flows, density-stratified flows in a vertical cross-section using density as the tracer q [15], and idealised magneto-hydrody-
namics where the (potential) vorticity q is subject to the Lorenz force [19].

Further extensions, e.g. to three-dimensional rotating stratified flows are feasible, requiring straightforward adaptions of
existing CASL codes [6]. CLAM also presents a promising opportunity for accurately modelling more realistic atmospheric
and oceanic flows. CLAM can carry more than one tracer q. Additional chemical and biological tracers (those that are advec-
tion dominated) may be represented by additional sets of contours (with natural parallelisation possibilities). But, only one
set of particles is required for all tracers. Each particle would contain a list of attributes, related to the residue qd belonging to
each tracer. Any forcing or dissipation (including chemical reactions, changes of state, etc.) would only modify the attributes
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of a particle, not its position, which is determined by simple advection, i.e. by (4). This appears to be a particularly efficient
procedure for representing a collection of interacting tracers.
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Appendix A. Particle-in-cell in CLAM

The particles in CLAM used to represent the residual field qd are handled as in a conventional Particle-in-Cell (PIC) meth-
od, e.g. as in Christiansen and Zabusky [2]. The velocity at each particle, say at x = Xd, is found using bi-linear interpolation
(fractional area weighting):
uðXdÞ ¼ wi;jui;j þwiþ1;juiþ1;j þwi;jþ1ui;jþ1 þwiþ1;jþ1uiþ1;jþ1 ðA:1Þ
where ui,j is the velocity at the grid point ð�xi; �yjÞ, while the wi,j are the interpolation weights
wi;jðXdÞ ¼ 1� jXd � �xij
Dx

� �
1� jYd � �yjj

Dy

� �
ðA:2Þ
for fixed grid spacing Dx and Dy in the x and y directions. We note in passing that the same interpolation method is used for
the nodes x = Xa representing the contours.

To obtain gridded values of qd when needed (for instance when computing u from q), an analogous procedure is used in
reverse. Each particle’s intensity Cd is divided amongst the corners of the grid box containing Xd, incrementing the value of qd

there:
qdiþm;jþn  wiþm;jþnCd ðm ¼ 0;1 and n ¼ 0;1Þ: ðA:3Þ
In effect, qd at each grid point is found by summing all particles (now indexed by k) in the adjacent grid boxes:
qdi;j ¼
X
k2Bi;j

wi;jðXdkÞCdk ðA:4Þ
where Bi,j denotes the four grid boxes surrounding the grid point.
Any explicit forcing and/or dissipation S(x, t) of the tracer q, see (1), is fully accounted for by setting Dqd/Dt = S(x, t). This is

naturally solved by a set of particles moving with the fluid. To do this, the variations in the particle intensities Cdk are found
by the analogue of (A.4),
Si;j ¼
X
k2Bi;j

wi;jðXdkÞ
dCdk

dt
; ðA:5Þ
except now we seek dCdk/dt, given S = Si,j over the grid. This results in a coupled system which requires numerical iteration,
but in practice it is rapidly convergent (see Fontane and Dritschel [13] for further details).
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